测度论笔记02·积分收敛定理

积分的定义-MCT-Fatou引理-DCT的框架搭建

非负简单函数的积分

(Ω,F,μ)(\varOmega, \mathcal{F}, \mu)为测度空间,回顾简单函数的定义,ϕ\phi如果满足

  1. 取值为实数而不能是±\boldsymbol{\pm \infty}
  2. 有限个
  3. (Ω,F,μ)(\varOmega, \mathcal{F}, \mu)上的可测函数

就称ϕ\phi(Ω,F,μ)(\varOmega, \mathcal{F}, \mu)上的简单函数

现在假设非负简单函数ϕ\phiDD上定义,(注意由简单函数的可测性我们知道DFD \in \mathcal{F}),设EFE \in \mathcal{F}EDE \subset D,假设{Ei}i=1n\{E_i\}_{i = 1}^nEE的一个划分,使得ϕ\phiEiE_i上面的取值为aia_i,且i,EiF\forall i, \boldsymbol{E_i \in \mathcal{F}}(这样的划分是存在的,令Ei={xE:ϕ(x)=ai}E_i = \{x\in E: \phi(x) = a_i\}即可)我们定义ϕ\boldsymbol{\phi}E\boldsymbol{E}上的积分

Eϕdμ=i=1naiμ(Ei)\int_E{\phi\mathrm{d}\mu} \xlongequal{\triangle} \sum_{i=1}^n{a_i\mu \left( E_i \right)}

注意:

  1. EiE_i的可测性保证了定义式右端μ(Ei)\mu(E_i)的运算合法性
  2. ϕ\phi非负性保证了定义式右端求和的运算合法性(不会出现++ \infty - \infty的情况)

假设非负简单函数ϕ\phiDD上定义,那么由ϕ\phi的可测性,有

Di={xΩ:ϕ(x)=ai}D_i \xlongequal{\triangle} \{x \in \varOmega: \phi(x) = a_i\}

都是可测集,并且是DD的一个划分,设EFE \in \mathcal{F}EDE \subset D,那么

Ei={xE:ϕ(x)=ai}E_i \xlongequal{\triangle} \{x \in E: \phi(x) = a_i\}

就是EE的一个划分,而且有Ei=DiEE_i=D_i\cap E,因此

Eϕdμ=i=1naiμ(Ei)=i=1naiμ(DiE)\int_E{\phi\mathrm{d}\mu} = \sum_{i=1}^n{a_i\mu \left( E_i \right)} = \sum_{i=1}^n{a_i\mu \left( D_i \cap E \right)}

非负的一般可测函数的积分

非负可测函数ffDFD \in \mathcal{F}上定义,定义f\boldsymbol{f}D\boldsymbol{D}上的积分为

Dfdμ=supϕf,ϕ非负简单函数Dϕdμ\int_D{f\mathrm{d}\mu} = \underset{\phi \leqslant f, \phi \text{为}\textbf{非负}\text{简单函数}}{\mathrm{sup}}\int_D{\phi \mathrm{d}\mu}

非负可测函数积分的若干性质

以下我们假定fif_i总是一般的非负可测函数(可以是广义实值的),而ϕi,φi\phi_i, \varphi_i总是非负简单函数,他们都在DFD \in \mathcal{F}上定义,下面是非负可测函数积分的若干性质

  1. f1f2Df1dμDf2dμf_1 \leqslant f_2 \Rightarrow \int_{D}{f_1 \mathrm{d}\mu} \leqslant \int_{D}{f_2 \mathrm{d}\mu}
  2. D0D,D0FD0fdμDfdμD_0 \subset D, D_0 \in \mathcal{F} \Rightarrow \int_{D_0}{f \mathrm{d}\mu} \leqslant \int_{D}{f \mathrm{d}\mu}
  3. f1=f2,a.e.xDDf1dμ=Df2dμf_1 = f_2, a.e. x\in D \Rightarrow \int_{D}{f_1 \mathrm{d}\mu} = \int_{D}{f_2 \mathrm{d}\mu}
  4. c>0\forall c > 0Dcfdμ=cDfdμ\int_{D}{cf \mathrm{d}\mu} = c \int_{D}{f \mathrm{d} \mu}

证明:

(1)

如果Df2dμ=+\int_{D}{f_2 \mathrm{d}\mu} = + \infty,那么我们已经完成了证明,现在只考虑Df2dμ<+\int_{D}{f_2 \mathrm{d}\mu} < + \infty的情形,任取ϕ\phi使得0ϕf10 \leqslant \phi \leqslant f_1,则ϕf2\phi \leqslant f_2,因此有

Dϕdμsup0ϕf2Dϕdμ=Dfdμ\int_{D}{\phi \mathrm{d}\mu} \leqslant \sup_{0 \leqslant \phi \leqslant f_2} \int_{D}{\phi \mathrm{d}\mu} = \int_{D}{f \mathrm{d}\mu}

ϕf1\phi \leqslant f_1的任意性,我们就证明了(1)

(2)

如果Dfdμ=+\int_{D}{f \mathrm{d}\mu} = + \infty,那么我们已经完成了证明,现在只考虑Dfdμ<+\int_{D}{f \mathrm{d}\mu} < + \infty的情形,任取ϕ\phi使得0ϕf0 \leqslant \phi \leqslant f,设{Di}i=1m\{D_i\}_{i = 1}^{m}DD的一个分划,那么{DiD0}i=1m\{D_i \cap D_0\}_{i = 1}^{m}就是D0D_0的一个分划,因此有

D0ϕdμ=i=1maiμ(DiD0)i=1maiμ(Di)Dϕdμsup0ϕfDϕdμ=Dfdμ\int_{D_0}{\phi \mathrm{d}\mu} = \sum_{i = 1}^{m} a_i \mu(D_i \cap D_0) \leqslant \sum_{i = 1}^{m} a_i \mu(D_i) \leqslant \int_{D}{\phi \mathrm{d}\mu} \leqslant \sup_{0 \leqslant \phi \leqslant f} \int_{D}{\phi \mathrm{d}\mu} = \int_{D}{f \mathrm{d}\mu}

ϕf\phi \leqslant f的任意性,我们就证明了(2)

(3)

我们先证明Df1dμ<+,Df2dμ<+\int_{D}{f_1 \mathrm{d}\mu} < +\infty , \int_{D}{f_2 \mathrm{d}\mu} < +\infty的情形,设

E={xD:f1(x)f2(x)}E = \{x\in D: f_1(x) \ne f_2(x)\}

μ(E)=0\mu(E) = 0,任取ϕ\phi使得0ϕf10 \leqslant \phi \leqslant f_1,定义

φ={ϕ,xDEc0,xE\varphi = \begin{cases} \phi ,x\in D\cap E^c\\ 0,x\in E\\ \end{cases}

φϕf2\varphi \leqslant \phi \leqslant f_2,并且φ\varphi也是非负简单函数,我们有

Dϕdμ=i=1maiμ(Di)=i=1maiμ(DiE)+i=1maiμ(DiEc)=μ(E)=0i=1maiμ(DiEc)\int_{D}{\phi \mathrm{d}\mu} = \sum_{i = 1}^{m} a_i \mu(D_i) = \sum_{i = 1}^{m} a_i \mu(D_i \cap E) + \sum_{i = 1}^{m} a_i \mu(D_i \cap E^c) \xlongequal{\mu(E) = 0} \sum_{i = 1}^{m} a_i \mu(D_i \cap E^c)

又注意到{DiEc}i=1m\{D_i \cap E^c\}_{i = 1}^{m}EcE^c的一个划分,因此我们有

Dφdμ=i=1maiμ(DiEc)+0μ(Ec)=i=1maiμ(DiEc)\int_{D}{\varphi \mathrm{d}\mu} = \sum_{i = 1}^{m} a_i \mu(D_i \cap E^c) + 0\cdot \mu(E^c) = \sum_{i = 1}^{m} a_i \mu(D_i \cap E^c)

因此

Dϕdμ=Dφdμsup0φf2Dφdμ=Df2dμ\int_{D}{\phi \mathrm{d}\mu} = \int_{D}{\varphi \mathrm{d}\mu} \leqslant \sup_{0\leqslant \varphi \leqslant f_2} \int_{D}{\varphi \mathrm{d}\mu} = \int_{D}{f_2 \mathrm{d}\mu}

ϕ\phi的任意性我们知道Df1dμDf2dμ\int_{D}{f_1 \mathrm{d}\mu} \leqslant \int_{D}{f_2 \mathrm{d}\mu},同理可证Df2dμDf1dμ\int_{D}{f_2 \mathrm{d}\mu} \leqslant \int_{D}{f_1 \mathrm{d}\mu},由此我们就证明了

Df2dμ=Df1dμ\int_{D}{f_2 \mathrm{d}\mu} = \int_{D}{f_1 \mathrm{d}\mu}

对于Df1dμ=+\int_{D}{f_1 \mathrm{d}\mu} = +\inftyDf2dμ=+\int_{D}{f_2 \mathrm{d}\mu} = +\infty的情形,只需用类似的方法证明NN\forall N \in \mathbb{N},都ϕfi\exists \phi \leqslant f_i使得DϕdμN\int_{D}{\phi \mathrm{d}\mu} \geqslant N即可

(4)

Dfdμ=+\int_{D} {f \mathrm{d}\mu} = +\infty时,结论显然成立,下面只讨论Dfdμ<+\int_{D} {f \mathrm{d}\mu} < +\infty的情形,任取0ϕf0 \leqslant \phi \leqslant f,则有cϕcfc \phi \leqslant cf,所以有

cDϕdμ=ϕ为非负简单函数DcϕdμsupφcfDφdμ=Dcfdμc \int_{D} {\phi \mathrm{d}\mu} \xlongequal{\phi为非负简单函数} \int_{D} {c \phi \mathrm{d}\mu} \leqslant \sup_{\varphi \leqslant cf}{\int_{D} {\varphi \mathrm{d}\mu}} = \int_{D} {cf \mathrm{d}\mu}

ϕ\phi的任意性,我们知道cDfdμDcfdμc \int_{D} {f \mathrm{d}\mu} \leqslant \int_{D} {cf \mathrm{d}\mu},又注意到φcf\forall \varphi \leqslant cf,有φcf\frac{\varphi}{c} \leqslant f(注意这一步用到了c>0c > 0的条件),仿照上面的方法论证可知DcfdμcDfdμ\int_{D} {cf \mathrm{d}\mu} \leqslant c \int_{D} {f \mathrm{d}\mu}

所以Dcfdμ=cDfdμ\int_{D} {cf \mathrm{d}\mu} = c \int_{D} {f \mathrm{d}\mu}

\square

Remark

注意Lebesgue积分具有线性性但是这里我们只证明了线性性的“一半”,即数乘,因为数乘性质可以直接按照定义来证明,而线性性的“另一半”,即加法,其证明依赖MCT(单调收敛定理)

MCT(单调收敛定理)

由简单函数的积分诱导出的测度

(Ω,F,μ)(\varOmega, \mathcal{F}, \mu)为测度空间,设ϕ\phi是一个非负简单函数,并且ϕ\boldsymbol{\phi}在全集Ω\boldsymbol{\varOmega}上都有定义(即ϕ\phi的定义域包含Ω\varOmega),那么由ν:F[0,+],ν(A)=Aϕdμ\nu : \mathcal{F}\rightarrow[0, + \infty], \nu(A) = \int_A{\phi \mathrm{d}\mu}定义的集函数是一个(Ω,F)(\varOmega,\mathcal{F})上的测度,即三元组(Ω,F,ν)(\varOmega, \mathcal{F},\nu)构成一个测度空间

证明:

首先注意到ν()=ϕdμ=0\nu(\varnothing) = \int_{\varnothing}{\phi}\mathrm{d}\mu = 0,下面我们只需证明ν\nu满足可列可加性

假设{An}n=1F\{A_n\}_{n = 1}^{\infty} \subset \mathcal{F}F\mathcal{F}中两两不交的集合列,设

ϕ=i=1maiχDi\phi = \sum_{i = 1}^{m} a_i\chi_{D_i}

由于ϕ\phi在整个Ω\varOmega上都有定义,所以i=1mDi=Ω\bigcup_{i = 1}^{m}D_i = \varOmega,那么注意到

{Di(n=1An)}i=1m\{D_i \cap\left(\bigcup_{n = 1}^{\infty}{A_n}\right)\}_{i = 1}^{m}

n=1An\bigcup_{n = 1}^{\infty}{A_n}的一个划分,根据非负简单函数的积分的定义,有

n=1Anϕdμ=i=1maiμ(Di(n=1An))=i=1mai(n=1μ(DiAn))\int_{\bigcup_{n = 1}^{\infty}} A_n \phi \mathrm{d}\mu = \sum_{i = 1}^{m} a_i \mu(D_i \cap\left(\bigcup_{n = 1}^{\infty}{A_n}\right)) = \sum_{i = 1}^{m}a_i\left(\sum_{n = 1}^{\infty}\mu(D_i \cap A_n)\right)

我们可以把最后一个等号右边的式子看作是“有限(mm)个极限”相加,由于被求和的极限都是正项级数,所以交换求和顺序不影响运算的合理性,即

n=1(i=1maiμ(DiAn)),i=1mai(n=1μ(DiAn))[0,+]\sum_{n = 1}^{\infty}\left(\sum_{i = 1}^{m}a_i \mu(D_i \cap A_n) \right), \sum_{i = 1}^{m}a_i\left(\sum_{n = 1}^{\infty}\mu(D_i \cap A_n)\right) \in [0, +\infty]

n=1μ(DiAn)\sum_{n = 1}^{\infty}\mu(D_i \cap A_n)是否为++\infty讨论可知

i=1mai(n=1μ(DiAn))=n=1(i=1maiμ(DiAn))=n=1Anϕdμ=n=1ν(An)\sum_{i = 1}^{m}a_i\left(\sum_{n = 1}^{\infty}\mu(D_i \cap A_n)\right) = \sum_{n = 1}^{\infty}\left(\sum_{i = 1}^{m}a_i \mu(D_i \cap A_n) \right) = \sum_{n = 1}^{\infty} \int_{A_n}{\phi \mathrm{d} \mu} = \sum_{n = 1}^{\infty}\nu(A_n)

至此,我们证明了ν\nu满足可列可加性,因此ν\nu(Ω,F)(\varOmega, \mathcal{F})上的一个测度

\square

MCT(单调收敛定理)

(Ω,F,μ)(\varOmega, \mathcal{F}, \mu)为测度空间,设{fn}n=1,f\{f_n\}_{n = 1}^{\infty}, f为该测度空间上面的非负可测广义实值函数(列)(3个条件同时满足),设DFD \in \mathcal{F}{fn}n=1,f\{f_n\}_{n = 1}^{\infty}, fDD上都有定义,而且limnfn=f,a.e.xD\lim_{n\rightarrow \infty} f_n = f, a.e. x \in D,如果n,fn(x)fn+1(x),a.e.xD\forall n, f_n(x) \leqslant f_{n + 1}(x), a.e. x \in D,则有

limnDfndμ=Dfdμ\lim_{n\rightarrow \infty} \int_{D}{f_n \mathrm{d} \mu} = \int_{D}{f \mathrm{d} \mu}

证明:

首先由非负可测函数积分的性质3a.e.a.e.成立的性质不影响积分值,所以可以直接认为定理条件都在DD上处处成立。由于n,fn(x)fn+1(x)\forall n, f_n(x) \leqslant f_{n + 1}(x),所以n,f=limnfnfn\forall n, f = \lim_{n\rightarrow \infty} f_n \geqslant f_n,由非负可测函数积分的性质1,我们有

DfndμDfdμ(nN)\int_{D}{f_n \mathrm{d} \mu} \leqslant \int_{D}{f \mathrm{d} \mu} (\forall n \in \mathbb{N})

两边同时取极限,得到

limnDfndμDfdμ\lim_{n\rightarrow \infty} \int_{D}{f_n \mathrm{d} \mu} \leqslant \int_{D}{f \mathrm{d} \mu}

limnDfndμ=+\lim_{n \rightarrow \infty}\int_{D} f_n \mathrm{d}\mu = + \infty时,反向不等式即证,下面我们仅考虑limnDfndμ<+\lim_{n \rightarrow \infty}\int_{D} f_n \mathrm{d}\mu < + \infty的情形

任取0ϕf0 \leqslant \phi \leqslant f以及α(0,1)\alpha \in (0,1),我们有0αϕϕf0 \leqslant \alpha \phi \leqslant \phi \leqslant f,定义集合列{En}n=1\{E_n\}_{n = 1}^{\infty}

Dn={xD:fn(x)αϕ(x)}D_n = \{x\in D: f_n(x) \geqslant \alpha \phi(x)\}

{En}n=1\{E_n\}_{n = 1}^{\infty}是一个递增列,我们下面来证明n=1Dn=D\bigcup_{n = 1}^{\infty}{D_n} = D,由DnD_n的构造知n=1DnD\bigcup_{n = 1}^{\infty}{D_n} \subset D,下面我们来证明反向包含,任取xDx \in D,如果f(x)=0f(x) = 0,那么f1(x)=f2(x)==0f_1(x) = f_2(x) = \cdots = 0,此时ϕ(x)=0,f1(x)=αϕ(x)=0\phi(x) = 0, f_1(x) = \alpha \phi(x) = 0所以xD1x \in D_1,如果f(x)>0f(x) > 0,此时0αϕ<ϕf0 \leqslant \alpha \phi < \phi \leqslant f,由数列极限的定义即知NN\exists N \in \mathbb{N}使得fN(x)>αϕ(x)f_N(x) > \alpha \phi(x),所以xDNn=1Dnx\in D_N \subset \bigcup_{n = 1}^{\infty}{D_n},至此我们已经证明了n=1Dn=D\boldsymbol{\bigcup_{n = 1}^{\infty}{D_n} = D}

ν(D)=Dϕdμ\nu(D) = \int_{D}{\phi \mathrm{d}\mu}(即为我们之前定义的由简单函数的积分诱导出的测度),我们有

DfndμDnfndμDnαϕdμ=ϕ是非负简单函数αDnϕdμ=αν(Dn)\int_{D}{f_n \mathrm{d}\mu} \geqslant \int_{D_n}f_n \mathrm{d}\mu \geqslant \int_{D_n}{\alpha \phi}\mathrm{d}\mu \xlongequal{\phi是非负简单函数} \alpha \int_{D_n}{\phi} \mathrm{d}\mu = \alpha \nu(D_n)

这里第一个不等号是因为非负可测函数的积分性质2;第二个不等号是因为在DnD_nfnαϕf_n \geqslant \alpha \phi,而且这里αϕ\alpha \phi是简单函数,再根根据一般非负可测函数的积分定义,Dnfndμ=sup0φfnDndμ\int_{D_n}{f_n}\mathrm{d}\mu = \sup_{0 \leqslant \varphi \leqslant f_n} \int_{D_n} \mathrm{d}\mu

注意到{Dn}n=1\{D_n\}_{n = 1}^{\infty} \uparrow,并且有limnDn=n=1Dn=D\lim_{n \to \infty} D_n = \bigcup_{n = 1}^{\infty}D_n = D所以有

limnν(Dn)=ν(limnDn)=ν(D)\lim_{n \to \infty}\nu(D_n) = \nu (\lim_{n \to \infty} D_n) = \nu(D)

Dfndμαν(Dn)\int_{D}{f_n \mathrm{d}\mu} \geqslant \alpha \nu(D_n)两边同时取极限nn \to \infty,得到

limnDfndμlimnαν(Dn)=αlimnν(Dn)=αν(D)\lim_{n \to \infty} \int_{D}{f_n \mathrm{d}\mu} \geqslant \lim_{n \to \infty} \alpha \nu(D_n) = \alpha \lim_{n \to \infty} \nu(D_n) = \alpha \nu(D)

α\alpha的任意性,我们有

limnDfndμν(D)=Dϕdμ\lim_{n \to \infty} \int_{D}{f_n \mathrm{d}\mu} \geqslant \nu(D) = \int_{D}{\phi \mathrm{d}\mu}

再由ϕ\phi的任意性,我们就有

limnDfndμDfdμ\lim_{n \to \infty} \int_{D}{f_n \mathrm{d}\mu} \geqslant \int_{D}{f \mathrm{d}\mu}

至此,我们就证明了limnDfndμ=Dfdμ\lim_{n \to \infty} \int_{D}{f_n \mathrm{d}\mu} = \int_{D}{f \mathrm{d}\mu}

\square

一个小结论

ff是任意非负可测函数(可以是广义实值的),ED,D,EFE\subset D, D, E \in \mathcal{F},则

EfχDdμ=Dfdμ\int_E{f\chi_{D}\mathrm{d}\mu} = \int_D{f\mathrm{d}\mu}

证明:

取在EE上定义的非负简单函数列{ϕn}n=1\{\phi_n\}_{n = 1}^{\infty}使得0ϕ1ϕ2f0 \leqslant \phi_1 \leqslant \phi_2 \leqslant \cdots \leqslant f,并且limnϕn=f\lim_{n \to \infty}\phi_n = f,定义

φn={ϕn,xE0,xDEc\varphi_n = \begin{cases} \phi_n ,x\in E\\ 0,x\in D\cap E^c\\ \end{cases}

则在DD上面,0φ1φ2f0 \leqslant \varphi_1 \leqslant \varphi_2 \leqslant \cdots \leqslant f,并且limnφn=fχE\lim_{n \to \infty}\varphi_n = f \chi_{E},由MCT,我们有

limnDφndμ=DfχEdμ\lim_{n \to \infty} \int_{D}\varphi_n \mathrm{d}\mu = \int_{D}f\chi_{E} \mathrm{d}\mu

又因为

nN,Dφndμ=φnϕn都是非负简单函数Eϕndμ\forall n \in \mathbb{N}, \int_{D} \varphi_n \mathrm{d}\mu \xlongequal{\varphi_n和\phi_n都是非负简单函数} \int_{E} \phi_n \mathrm{d}\mu

所以有

DfχEdμ=limnDφndμ=limnDϕndμ=Efdμ\int_{D}f\chi_{E} \mathrm{d}\mu = \lim_{n \to \infty} \int_{D} \varphi_n \mathrm{d}\mu = \lim_{n \to \infty} \int_{D} \phi_n \mathrm{d}\mu = \int_{E}f\mathrm{d}\mu

\square

MCT的应用——一般非负可测函数的积分性质

现在有了MCT与上面我们证明的“一个小结论”后,我们就可以来证明一般的非负可测函数(可以是广义实值的)的Lebesgue积分的线性性以及区域可加性

(线性性)(Ω,F,μ)(\varOmega, \mathcal{F}, \mu)为测度空间,设非负可测函数列{fn}n=1\{f_n\}_{n = 1}^{\infty}DFD\in \mathcal{F}上都有定义,那么NN\forall N \in \mathbb{N},我们有

Dn=1Nfndμ=n=1NDfndμ\int_{D}{\sum_{n = 1}^{N} f_n \mathrm{d}\mu} = \sum_{n = 1}^{N} \int_{D}{f_n}\mathrm{d}\mu

以及

Dn=1fndμ=n=1Dfndμ\int_{D}{\sum_{n = 1}^{\infty} f_n \mathrm{d}\mu} = \sum_{n = 1}^{\infty} \int_{D}{f_n}\mathrm{d}\mu

证明:

为了证明第一个式子,由归纳法原理,我们只需证明

Df1+f2dμ=Df1dμ+Df2dμ\int_{D}{f_1 + f_2}\mathrm{d} \mu = \int_{D}f_1 \mathrm{d}\mu + \int_{D}f_2 \mathrm{d}\mu

0ϕ11ϕ120 \leqslant \phi_{11} \leqslant \phi_{12} \leqslant \cdots以及0ϕ21ϕ220 \leqslant \phi_{21} \leqslant \phi_{22} \leqslant \cdots使得limnϕ1n=f1,limnϕ2n=f2\lim_{n \to \infty} \phi_{1n} = f_1, \lim_{n \to \infty} \phi_{2n} = f_2,由MCT,我们有

limnDϕ1ndμ=Df1dμ,limnDϕ2ndμ=Df2dμ\lim_{n \to \infty} \int_{D} \phi_{1n} \mathrm{d}\mu = \int_{D} f_1 \mathrm{d}\mu, \lim_{n \to \infty} \int_{D} \phi_{2n} \mathrm{d}\mu = \int_{D} f_2 \mathrm{d}\mu

注意到0ϕ11+ϕ21ϕ12+ϕ220 \leqslant \phi_{11} + \phi_{21} \leqslant \phi_{12} + \phi_{22} \leqslant \cdots并且limnϕ1n+ϕ2n=f1+f2\lim_{n \to \infty} \phi_{1n} +\phi_{2n} = f_1 + f_2,所以有

Df1dμ+Df2dμ=limnDϕ1ndμ+limnDϕ2ndμ=极限运算性质limn(Dϕ1ndμ+Dϕ2ndμ)=ϕ1nϕ2n是简单函数limnDϕ1+ϕ2dμ=MCTlimnDf1+f2dμ\begin{align*} \int_{D}f_1 \mathrm{d}\mu + \int_{D}f_2 \mathrm{d} \mu = \lim_{n \to \infty} \int_{D} \phi_{1n} \mathrm{d}\mu + \lim_{n \to \infty} \int_{D} \phi_{2n} \mathrm{d}\mu &\xlongequal{极限运算性质} \lim_{n \to \infty} \left(\int_{D} \phi_{1n} \mathrm{d}\mu + \int_{D} \phi_{2n} \mathrm{d} \mu \right) &\xlongequal{\phi_{1n}和\phi_{2n}是简单函数} \lim_{n \to \infty} \int_{D} \phi_1 + \phi_2 \mathrm{d}\mu &\xlongequal{MCT} \lim_{n \to \infty} \int_{D} f_1+f_2 \mathrm{d}\mu \end{align*}

至此,再由归纳法原理,我们就已经证明了

Dn=1Nfndμ=n=1NDfndμ\int_{D}{\sum_{n = 1}^{N} f_n \mathrm{d}\mu} = \sum_{n = 1}^{N} \int_{D}{f_n}\mathrm{d}\mu

FN=n=1NfnF_N = \sum_{n = 1}^{N} f_n,由于{fn}n=1\{f_n\}_{n = 1}^{\infty}非负可测函数列,所以0F1F20 \leqslant F_1 \leqslant F_2 \leqslant \cdots,注意到n=1fn=limNFN\sum_{n = 1}^{\infty} f_n = \lim_{N \to \infty} F_N,我们就有

Dn=1fndμ=DlimNFNdμ=MCTlimNDFNdμ=limNDn=1Nfndμ=Lebsegue积分的有限线性性limN(n=1NDfndμ)=级数和的定义n=1Dfndμ\begin{align*} \int_{D}{\sum_{n = 1}^{\infty} f_n \mathrm{d}\mu} = \int_{D} \lim_{N \to \infty} F_N \mathrm{d}\mu \xlongequal{MCT} \lim_{N \to \infty} \int_{D}{F_N}\mathrm{d}\mu = \lim_{N \to \infty} \int_{D}{\sum_{n = 1}^{N}f_n \mathrm{d}\mu} \xlongequal{Lebsegue积分的有限线性性} \lim_{N \to \infty} \left(\sum_{n = 1}^{N} \int_{D}{f_n \mathrm{d}\mu} \right) \xlongequal{级数和的定义} \sum_{n = 1}^{\infty} \int_{D}{f_n \mathrm{d}\mu} \end{align*}

\square

(区域可加性){Dn}n=1F\{D_n\}_{n = 1}^{\infty} \subset \mathcal{F}为一族两两不交的可测集,nN\forall n\in \mathbb{N}ffDnD_n上都有定义,且ff为任意的非负可测函数,那么NN\forall N \in \mathbb{N},我们有

n=1NDnfdμ=n=1NDnfdμ\int_{\bigcup_{n = 1}^{N}D_n}f\mathrm{d}\mu = \sum_{n = 1}^{N} \int_{D_n} f \mathrm{d}\mu

以及

n=1Dnfdμ=n=1Dnfdμ\int_{\bigcup_{n = 1}^{\infty}D_n}f\mathrm{d}\mu = \sum_{n = 1}^{\infty} \int_{D_n} f \mathrm{d}\mu

证明:

为了证明第一个式子,由归纳法原理,我们只需证明

D1D2fdμ=D1fdμ+D2fdμ\int_{D_1 \cup D_2}f \mathrm{d}\mu = \int_{D_1}f\mathrm{d}\mu + \int_{D_2}f\mathrm{d}\mu

注意到在D1D2D_1 \cup D_2上,我们有f=fχD1+fχD2f = f\chi_{D_1} + f\chi_{D_2},因此有

D1D2fdμ=D1D2fχD1+fχD2dμ=Lebesgue积分的线性性D1D2fχD1dμ+D1D2fχD2dμ=“一个小结论”D1fdμ+D2fdμ\begin{align*} \int_{D_1 \cup D_2}f \mathrm{d}\mu = \int_{D_1 \cup D_2}f\chi_{D_1} + f\chi_{D_2} \mathrm{d}\mu \xlongequal{Lebesgue积分的线性性} \int_{D_1 \cup D_2}f\chi_{D_1} \mathrm{d}\mu + \int_{D_1 \cup D_2}f\chi_{D_2} \mathrm{d}\mu \xlongequal{“一个小结论”} \int_{D_1}f \mathrm{d}\mu + \int_{D_2}f \mathrm{d}\mu \end{align*}

由归纳法原理,我们就证明了第一个式子

对第二个式子,注意到在n=1Dn\bigcup_{n = 1}^{\infty}D_n上,

f=n=1fχDnf = \sum_{n = 1}^{\infty}f\chi_{D_n}

所以有

n=1Dnfdμ=n=1Dn(n=1fχDn)dμ=Lebesgue积分的线性性n=1n=1DnfχDndμ=“一个小结论”n=1Dnfdμ\begin{align*} \int_{\bigcup_{n = 1}^{\infty}D_n} f \mathrm{d}\mu = \int_{\bigcup_{n = 1}^{\infty}D_n} \left(\sum_{n = 1}^{\infty}f\chi_{D_n} \right) \mathrm{d}\mu \xlongequal{Lebesgue积分的线性性} \sum_{n = 1}^{\infty} \int_{\bigcup_{n = 1}^{\infty}D_n} f \chi_{D_n} \mathrm{d}\mu \xlongequal{“一个小结论”} \sum_{n = 1}^{\infty} \int_{D_n} f \mathrm{d}\mu \end{align*}

\square

推论:取(Ω,F,μ)(\varOmega, \mathcal{F}, \mu)为测度空间,设ff是一个非负可测函数(可以是广义实值的),并且f\boldsymbol{f}在全集Ω\boldsymbol{\varOmega}上都有定义(即ff的定义域包含Ω\varOmega),那么由ν:F[0,+],ν(A)=Afdμ\nu : \mathcal{F}\rightarrow[0, + \infty], \nu(A) = \int_A{f \mathrm{d}\mu}定义的集函数是一个(Ω,F)(\varOmega,\mathcal{F})上的测度,即三元组(Ω,F,ν)(\varOmega, \mathcal{F},\nu)构成一个测度空间

Fatou引理

(Ω,F,μ)(\varOmega, \mathcal{F}, \mu)为测度空间,DFD \in \mathcal{F},设{fn}n=1\{f_n\}_{n = 1}^{\infty}是在DD上有定义的非负可测函数列(可以是广义实值的),则有

Dlim infnfndμlim infnDfndμ\int_{D} \liminf_{n \to \infty} f_n \mathrm{d} \mu \leqslant \liminf_{n \to \infty} \int_{D} f_n \mathrm{d} \mu

证明:

注意到

Dlim infnfndμ=Dlimkinfnkfkdμ=infnkfk关于k单调,MCTlimnDinfnkfkdμ\int_{D} \liminf_{n \to \infty} f_n \mathrm{d} \mu = \int_{D} \lim_{k \to \infty} \inf_{n \geqslant k} f_k \mathrm{d} \mu \xlongequal{\inf_{n \geqslant k} f_k 关于k单调,MCT} \lim_{n \to \infty} \int_{D} \inf_{n \geqslant k} f_k \mathrm{d} \mu

又因为Fk=definfnkfn  s.t.  xD,Fk+1(x)Fk(x)F_k \xlongequal{\mathrm{def}} \inf_{n \geqslant k} f_n \; s.t. \; \forall x\in D, F_{k + 1}(x) \geqslant F_k(x),所以DFkdμ=Dinfnkfndμ\int_{D}F_k \mathrm{d}\mu = \int_{D} \inf_{n \geqslant k} f_n \mathrm{d} \mu关于kk是递增数列,因此limkDFkdμ\lim_{k \to \infty}\int_{D}F_k \mathrm{d}\mu存在,所以有

limkDFkdμ=lim infkDFkdμ\lim_{k \to \infty}\int_{D}F_k \mathrm{d}\mu = \liminf_{k \to \infty} \int_{D}F_k \mathrm{d}\mu

再注意到xD,kN,fkFk\forall x \in D, \forall k \in \mathbb{N}, f_k \geqslant F_k,所以有

DFkdμDfkdμ\int_{D} F_k \mathrm{d}\mu \leqslant \int_{D} f_k \mathrm{d}\mu

两边同时取下极限,就得到了

Dlim infnfndμ=Dlimkinfnkfkdμ=limkDFkdμ=lim infkDFkdμlim infkDfkdμ\begin{align*} \int_{D} \liminf_{n \to \infty} f_n \mathrm{d} \mu = \int_{D} \lim_{k \to \infty} \inf_{n \geqslant k} f_k \mathrm{d} \mu = \lim_{k \to \infty}\int_{D}F_k \mathrm{d}\mu = \liminf_{k \to \infty} \int_{D}F_k \mathrm{d}\mu \leqslant \liminf_{k \to \infty} \int_{D} f_k \mathrm{d}\mu \end{align*}

\square

DCT(控制收敛定理)

一般可测函数的积分

ff是测度空间(Ω,F,μ)(\varOmega, \mathcal{F}, \mu)上的一般可测函数DFD \in \mathcal{F}ffDD上有定义,定义ff的正、负部分分别为

f+={f,f>00,f0,  f={f,f<00,f0f^+=\begin{cases} f,\:f>0\\ 0,\:f\leqslant 0\\ \end{cases},\; f^-=\begin{cases} -f,\:f<0\\ 0,\:f\geqslant 0\\ \end{cases}

f+f^+ff^-都是非负可测函数,我们有

  1. 如果Df+dμ<+\int_{D}f^+ \mathrm{d}\mu < +\inftyDfdμ<+\int_{D}f^- \mathrm{d}\mu < +\infty两者同时成立,则称ffDD可积,并定义Dfdμ=defDf+dμDfdμ\int_{D}f \mathrm{d}\mu \xlongequal{\mathrm{def}} \int_{D}f^+ \mathrm{d}\mu - \int_{D}f^- \mathrm{d}\mu
  2. 如果Df+dμ<+\int_{D}f^+ \mathrm{d}\mu < +\inftyDfdμ<+\int_{D}f^- \mathrm{d}\mu < +\infty两者只成立其一,则称ffDD半可积(有些文献也称“f\boldsymbol{f}的积分存在”),并定义Dfdμ=defDf+dμDfdμ\int_{D}f \mathrm{d}\mu \xlongequal{\mathrm{def}} \int_{D}f^+ \mathrm{d}\mu - \int_{D}f^- \mathrm{d}\mu
  3. 如果Df+dμ<+\int_{D}f^+ \mathrm{d}\mu < +\inftyDfdμ<+\int_{D}f^- \mathrm{d}\mu < +\infty两者都不成立,则称ffDD不可积

广义Fatou引理

(Ω,F,μ)(\varOmega, \mathcal{F}, \mu)为测度空间,DFD \in \mathcal{F},设ggDD可积函数{fn}n=1\{f_n\}_{n = 1}^{\infty}是在DD上有定义的函数列(可以是广义实值的)使得nN,fng\forall n \in \mathbb{N}, \: f_n \geqslant g,则有fnf_nlim infnfn\liminf_{n \to \infty}f_n都是半可积的,并且

Dlim infnfndμlim infnDfndμ\int_{D} \liminf_{n \to \infty} f_n \mathrm{d} \mu \leqslant \liminf_{n \to \infty} \int_{D} f_n \mathrm{d} \mu

如果nN,fng\forall n \in \mathbb{N}, \: f_n \leqslant g,则有fnf_nlim supnfn\limsup_{n \to \infty}f_n都是半可积的,并且

Dlim supnfndμlim supnDfndμ\int_{D} \limsup_{n \to \infty} f_n \mathrm{d} \mu \geqslant \limsup_{n \to \infty} \int_{D} f_n \mathrm{d} \mu

证明:

对第一个式子,因为fngf_n \geqslant g,所以lim infnfng\liminf_{n \to \infty} f_n \geqslant g,所以lim infnfn\liminf_{n \to \infty} f_n半可积

注意到fngf_n - g非负关于n\boldsymbol{n}递增的可测函数列,因此对fngf_n - g应用Fatou引理,我们有

Dlim infnfndμDgdμ=g可积D(lim infnfn)gdμ=D(lim infnfnlim infng)dμ=Dlim infn(fng)dμlim infnDfngdμ\begin{align*} \int_{D} {\liminf_{n \to \infty} f_n \mathrm{d} \mu} - \int_{D} g \mathrm{d}\mu \xlongequal{g可积} \int_{D} {\left(\liminf_{n \to \infty} f_n \right) - g \mathrm{d}\mu} = \int_{D} {\left(\liminf_{n \to \infty} f_n - \liminf_{n \to \infty} g \right) \mathrm{d}\mu} = \int_{D} \liminf_{n \to \infty} {(f_n - g)} \mathrm{d}\mu \leqslant \liminf_{n \to \infty} \int_{D}{f_n - g} \mathrm{d}\mu \end{align*}

又因为gg可积,而且fngf_n \geqslant g,所以Dfndμ[0,+]\int_{D} f_n \mathrm{d}\mu \in [0, +\infty],所以nN,Dfngdμ=DfndμDgdμ\forall n \in \mathbb{N}, \: \int_{D} f_n - g \mathrm{d}\mu = \int_{D} f_n \mathrm{d}\mu - \int_{D} g \mathrm{d}\mu,在这个式子两边同时取下极限,我们有

lim infnDfngdμ=lim infn(DfndμDgdμ)=lim infnDgdμ=Dgdμlim infnDfdμDgdμ\begin{align*} \liminf_{n \to \infty} \int_{D} f_n - g \mathrm{d}\mu = \liminf_{n \to \infty} \left( \int_{D} f_n \mathrm{d}\mu - \int_{D} g \mathrm{d}\mu \right) \xlongequal{\liminf_{n \to \infty} \int_{D} g \mathrm{d}\mu = \int_{D} g \mathrm{d}\mu} \liminf_{n \to \infty} \int_{D} f \mathrm{d}\mu - \int_{D} g \mathrm{d}\mu \end{align*}

结合上式,我们就得到了

Dlim infnfndμDgdμlim infnDfdμDgdμDgdμRDlim infnfndμlim infnDfndμ\begin{align*} \int_{D} {\liminf_{n \to \infty} f_n \mathrm{d} \mu} - \int_{D} g \mathrm{d}\mu \leqslant \liminf_{n \to \infty} \int_{D} f \mathrm{d}\mu - \int_{D} g \mathrm{d}\mu \xRightarrow{\int_{D} g\mathrm{d}\mu \in \mathbb{R}} \int_{D} \liminf_{n \to \infty} f_n \mathrm{d} \mu \leqslant \liminf_{n \to \infty} \int_{D} f_n \mathrm{d} \mu \end{align*}

对于第二个式子,注意到fg-f\leqslant -g

一般可测函数积分的几个性质

(区域可加性)设{Dn}n=1F\{D_n\}_{n = 1}^{\infty} \subset \mathcal{F}为两两不交的可测集合列,设ffD=n=1DnD = \bigcup_{n = 1}^{\infty} D_n半可积,则我们有

n=1mDnfdμ=n=1mDnfdμ\int_{\bigcup_{n = 1}^{m}D_n}f \mathrm{d}\mu = \sum_{n = 1}^{m} \int_{D_n}f \mathrm{d}\mu

以及

n=1Dnfdμ=n=1Dnfdμ\int_{\bigcup_{n = 1}^{\infty}D_n}f \mathrm{d}\mu = \sum_{n = 1}^{\infty} \int_{D_n}f \mathrm{d}\mu

证明:

对第一个式子,因为ffDD上可积,所以Dfdμ\int_{D}f^-\mathrm{d}\muDf+dμ\int_{D}f^+\mathrm{d}\mu中至多有一个为++ \infty,不妨设Df+dμ[0,+]\int_{D}f^+\mathrm{d}\mu \in [0, + \infty],而Dfdμ[0,+)\int_{D}f^-\mathrm{d}\mu \in [0, + \infty),此时n=1mDnfdμDfdμ\int_{\bigcup_{n = 1}^{m}D_n}f^-\mathrm{d}\mu \leqslant \int_{D}f^-\mathrm{d}\mu,因此n=1mDnfdμ[0,+)\int_{\bigcup_{n = 1}^{m}D_n}f^-\mathrm{d}\mu \in [0, + \infty),所以我们有

n=1mDnfdμ=n=1mDnf+dμn=1mDnfdμ=n=1mDnf+dμn=1mDnfdμ=n=1mDnfdμ[0,+)n=1mDnf+fdμ=n=1mDnfdμ\begin{align*} \int_{\bigcup_{n = 1}^{m}D_n}f \mathrm{d}\mu = \int_{\bigcup_{n = 1}^{m}D_n}f^+ \mathrm{d}\mu - \int_{\bigcup_{n = 1}^{m}D_n}f^- \mathrm{d}\mu = \sum_{n = 1}^{m} \int_{D_n}f^+ \mathrm{d}\mu - \sum_{n = 1}^{m} \int_{D_n}f^- \mathrm{d}\mu \xlongequal{\sum_{n = 1}^{m} \int_{D_n}f^- \mathrm{d}\mu \in [0, +\infty)} \sum_{n = 1}^{m} \int_{D_n}f^+ - f^- \mathrm{d}\mu = \sum_{n = 1}^{m} \int_{D_n}f \mathrm{d}\mu \end{align*}

同样地,对第二个式子,保持上面的假设不变,我们有Dfdμ[0,+)\int_{D}f^-\mathrm{d}\mu \in [0, + \infty),此时n=1DnfdμDfdμ\int_{\bigcup_{n = 1}^{\infty}D_n}f^-\mathrm{d}\mu \leqslant \int_{D}f^-\mathrm{d}\mu,因此n=1Dnfdμ[0,+)\int_{\bigcup_{n = 1}^{\infty}D_n}f^-\mathrm{d}\mu \in [0, + \infty),所以我们有

n=1Dnfdμ=n=1Dnf+dμn=1Dnfdμ=n=1Dnf+dμn=1Dnfdμ=n=1Dnfdμ[0,+)n=1Dnf+fdμ=n=1Dnfdμ\begin{align*} \int_{\bigcup_{n = 1}^{\infty}D_n}f \mathrm{d}\mu = \int_{\bigcup_{n = 1}^{\infty}D_n}f^+ \mathrm{d}\mu - \int_{\bigcup_{n = 1}^{\infty}D_n}f^- \mathrm{d}\mu = \sum_{n = 1}^{\infty} \int_{D_n}f^+ \mathrm{d}\mu - \sum_{n = 1}^{\infty} \int_{D_n}f^- \mathrm{d}\mu \xlongequal{\sum_{n = 1}^{\infty} \int_{D_n}f^- \mathrm{d}\mu \in [0, +\infty)} \sum_{n = 1}^{\infty} \int_{D_n}f^+ - f^- \mathrm{d}\mu = \sum_{n = 1}^{\infty} \int_{D_n}f \mathrm{d}\mu \end{align*}

(在一定条件下的可加性)取测度空间(Ω,F,μ)(\varOmega, \mathcal{F}, \mu),设DFD \in \mathcal{F}f,gf,g为在DD上有定义的半可积函数,如果Dfgdμ[,+]\int_{D}f-g \mathrm{d}\mu \in [- \infty, + \infty](即没有出现\infty - \infty的情形)那么我们有

  1. f+gf+gDD几乎处处有定义
  2. f+gf + gDD半可积
  3. D(f+g)dμ=Dfdμ+Dgdμ\int_{D} \left(f + g\right) \mathrm{d} \mu = \int_{D} f \mathrm{d} \mu + \int_{D} g \mathrm{d} \mu

证明:

因为Dfgdμ[,+]\int_{D}f-g \mathrm{d}\mu \in [- \infty, + \infty],所以我们不妨设Dfdμ,Dgdμ(,+]\int_{D}f \mathrm{d}\mu, \int_{D}g \mathrm{d}\mu \in (- \infty, + \infty],因此我们有Df+dμ,Dg+dμ[0,+]\int_{D} f^+ \mathrm{d}\mu , \int_{D} g^+ \mathrm{d}\mu \in [0, +\infty]Dfdμ,Dgdμ[0,+)\int_{D} f^- \mathrm{d}\mu , \int_{D} g^- \mathrm{d}\mu \in [0, +\infty),因此f,gf, g只能在DD的一个零测子集上面取值为- \infty,这就证明了f+gf+gDD几乎处处有定义

由于ffgg都在DD上可测,所以f+gf + g也在DD上可测,注意到

(f+g)+f++g+\left(f + g\right)^+ \leqslant f^+ + g^+

以及

(f+g)f+g\left(f + g\right)^- \leqslant f^- + g^-

所以我们有D(f+g)+dμD(f++g+)dμ=Df+dμ+Dg+dμ\int_{D}\left(f + g\right)^+\mathrm{d}\mu \leqslant \int_{D} (f^+ + g^+) \mathrm{d}\mu = \int_{D}f^+ \mathrm{d}\mu + \int_{D}g^+ \mathrm{d}\mu以及D(f+g)dμD(f+g)dμ=Dfdμ+Dgdμ\int_{D}\left(f + g\right)^-\mathrm{d}\mu \leqslant \int_{D} (f^- + g^-) \mathrm{d}\mu = \int_{D}f^- \mathrm{d}\mu + \int_{D}g^- \mathrm{d}\mu,于是我们就有D(f+g)+dμ[0,+]\int_{D}\left(f + g\right)^+\mathrm{d}\mu \in [0,+\infty]以及D(f+g)dμ[0,+)\int_{D}\left(f + g\right)^-\mathrm{d}\mu \in [0, + \infty),所以f+gf + gDD半可积(即不会出现\infty - \infty的情形)

注意到

f+g=(f+g)+(f+g)=f+f+g+gf + g = \left(f + g\right)^+ - \left(f + g\right)^- = f^+ - f^- + g^+ - g^-

由于(f+g),f,g[0,+)  a.e.xD\left(f + g\right)^-, f^- , g^- \in [0, +\infty) \; a.e. x \in D,所以

(f+g)++f+g=(f+g)+f++g+  a.e.xD\left(f + g\right)^+ + f^- + g^- = \left(f + g\right)^- + f^+ + g^+ \; a.e. x\in D

(注意这里的a.e.a.e.是由f+gf+gDD几乎处处有定义中的几乎处处所引起的),对等式两边同时在DD上积分(没有定义的地方补充定义函数值为00),我们有

D((f+g)++f+g)dμ=(f+g)+,f,g都是非负值函数D(f+g)+dμ+Dfdμ+Dgdμ=D((f+g)+f++g+)dμ=(f+g),f+,g+都是非负值函数D(f+g)dμ+Df+dμ+Dg+dμ\begin{align*} \int_{D}{\left(\left(f + g\right)^+ + f^- + g^- \right)} \mathrm{d}\mu \xlongequal{\left(f + g\right)^+ , f^- , g^-都是非负值函数} \int_{D}\left(f + g\right)^+ \mathrm{d}\mu + \int_{D}f^- \mathrm{d}\mu + \int_{D}g^- \mathrm{d}\mu = \int_{D}{\left(\left(f + g\right)^- + f^+ + g^+\right)} \mathrm{d}\mu \xlongequal{\left(f + g\right)^- , f^+ , g^+都是非负值函数}\int_{D}\left(f + g\right)^- \mathrm{d}\mu + \int_{D}f^+ \mathrm{d}\mu + \int_{D}g^+ \mathrm{d}\mu \end{align*}

又因为Dfdμ,Dgdμ,D(f+g)dμ[0,+)\int_{D}f^- \mathrm{d}\mu, \int_{D}g^- \mathrm{d}\mu, \int_{D} (f + g)^- \mathrm{d}\mu \in [0, + \infty),所以我们可以在上式中把它们作移项(即把它们减到等号对面的式子上面去),于是我们就得到了

D(f+g)+dμD(f+g)dμ=Df+dμDfdμ+Dg+dμDgdμ=非负函数积分的定义D(f+g)dμ\int_{D} (f + g)^+ \mathrm{d}\mu - \int_{D} (f + g)^- \mathrm{d}\mu = \int_{D} f^+ \mathrm{d}\mu - \int_{D} f^- \mathrm{d}\mu + \int_{D} g^+ \mathrm{d}\mu - \int_{D} g^- \mathrm{d}\mu \xlongequal{\text{非负函数积分的定义}} \int_{D} (f + g) \mathrm{d}\mu

\square

DCT(控制收敛定理)


测度论笔记02·积分收敛定理
https://godwinjc.github.io/2025/04/01/测度论笔记02·积分收敛定理/
作者
Godwinjc
发布于
2025年4月1日
许可协议