常用Riemann积分公式

常用Riemann积分公式总结

xax+bdx=23a2(ax2b)ax+b\int{\frac{x}{\sqrt{ax+b}}\mathrm{d}x=\frac{2}{3a^2}\left( ax-2b \right) \sqrt{ax+b}} \\

dxx2a2=12alnxax+a\int{\frac{\mathrm{d}x}{x^2-a^2}=\frac{1}{2a}\ln \left| \frac{x-a}{x+a} \right|} \\

dxx2+a2=1aarctanxa\int{\frac{\mathrm{d}x}{x^2+a^2}=\frac{1}{a}\mathrm{arc}\tan \frac{x}{a}} \\

dxax2+bx+c={2Δarctan2ax+bΔΔ<01Δln2ax+bΔ2ax+b+ΔΔ>0\int{\frac{\mathrm{d}x}{ax^2+bx+c}}=\begin{cases} \frac{2}{\sqrt{-\Delta}}\mathrm{arc}\tan \frac{2ax+b}{\sqrt{-\Delta}}\text{,}\Delta <0\\ \frac{1}{\sqrt{\Delta}}\ln \left| \frac{2ax+b-\sqrt{\Delta}}{2ax+b+\sqrt{\Delta}} \right|\text{,}\Delta >0\\ \end{cases} \\

dxx2+a2=lnx+x2+a2\int{\frac{\mathrm{d}x}{\sqrt{x^2+a^2}}=\ln \left| x+\sqrt{x^2+a^2} \right|} \\

dxx2a2=lnx+x2a2\int{\frac{\mathrm{d}x}{\sqrt{x^2-a^2}}=\ln \left| x+\sqrt{x^2-a^2} \right|} \\

上面两个式子可以归并为\text{上面两个式子可以归并为}

dxx2+y=lnx+x2+y(不论y的正负)\int{\frac{\mathrm{d}x}{\sqrt{x^2+y}}=\ln \left| x+\sqrt{x^2+y} \right|}\left( \text{不论}y\text{的正负} \right) \\

dx(x2+a2)32=xa2x2+a2\int{\frac{\mathrm{d}x}{\left( x^2+a^2 \right) ^{\frac{3}{2}}}=\frac{x}{a^2\sqrt{x^2+a^2}}} \\

dxa2x2=arcsinxa\int{\frac{\mathrm{d}x}{\sqrt{a^2-x^2}}}=\mathrm{arc}\sin \frac{x}{a} \\

x2+a2dx=x2x2+a2+a22lnx+x2+a2\int{\sqrt{x^2+a^2}}\mathrm{d}x=\frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}\ln \left| x+\sqrt{x^2+a^2} \right| \\

x2a2dx=x2x2a2a22lnx+x2a2\int{\sqrt{x^2-a^2}}\mathrm{d}x=\frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}\ln \left| x+\sqrt{x^2-a^2} \right| \\

上面两个式子可以归并为\text{上面两个式子可以归并为}

x2+ydx=x2x2+y+y2lnx+x2+y(不论y的正负)\int{\sqrt{x^2+y}}\mathrm{d}x=\frac{x}{2}\sqrt{x^2+y}+\frac{y}{2}\ln \left| x+\sqrt{x^2+y} \right|\left( \text{不论}y\text{的正负} \right) \\

a2x2dx=x2a2x2+a22arcsinxa\int{\sqrt{a^2-x^2}}\mathrm{d}x=\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\mathrm{arc}\sin \frac{x}{a} \\

axdx=axlna\int{a^x}\mathrm{d}x=\frac{a^x}{\ln a} \\

tanxdx=lncosx\int{\tan x\mathrm{d}x=-\ln \left| \cos x \right|} \\

cotxdx=lnsinx\int{\cot x\mathrm{d}x=}\ln \left| \sin x \right| \\

secxdx=lntan(x2+π4)=ln(secx+tanx)\int{\sec x\mathrm{d}x=}\ln \left| \tan \left( \frac{x}{2}+\frac{\pi}{4} \right) \right|=\ln \left( \sec x+\tan x \right) \\

cscxdx=lntan(x2)\int{\csc x\mathrm{d}x=}\ln \left| \tan \left( \frac{x}{2} \right) \right| \\

sec2xdx=tanx\int{\sec ^2x\mathrm{d}x=}\tan x \\

csc2xdx=cotx\int{\csc ^2x\mathrm{d}x=}-\cot x \\

Im,n=0π2sinmxcosnxdx={(m1)!!(n1)!!(m+n)!!π2,m,n都为偶数(m1)!!(n1)!!(m+n)!!,否则I_{m,n} = \int_{0}^{\frac{\pi}{2}} \sin^m x \cos^n x \,\mathrm{d}x = \begin{cases} \displaystyle \frac{(m-1)!!\,(n-1)!!}{(m+n)!!} \cdot \frac{\pi}{2}, & \text{当} m,n \text{都为偶数}\\ \displaystyle \frac{(m-1)!!\,(n-1)!!}{(m+n)!!}, & \text{否则} \end{cases}

万能替换:dx=21+t2dt,sinx=2t1+t2,cosx=1t21+t2,t=tan(x2)\text{万能替换}: \\ \mathrm{d}x=\frac{2}{1+t^2}\mathrm{d}t,\sin x=\frac{2t}{1+t^2},\cos x=\frac{1-t^2}{1+t^2},t=\tan \left( \frac{x}{2} \right)


常用Riemann积分公式
https://godwinjc.github.io/2025/03/27/常用Riemann积分公式/
作者
Godwinjc
发布于
2025年3月27日
许可协议